3rd edition

Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Scientific board: Marco Ladetto (Alessandria) Umberto Vitolo (Candiolo-TO)

Disclosures of Giulia Rivoli

Company	Research	Employee	Consultant	Stockholder	Speakers	Advisory	Other
name	support	Employee	Consultant	Stockholder	bureau	board	Other

NOTHING TO DISCLOSE

ROLE OF TRANSPLANTATION IN HIGH RISK MDS

TABLE 5 Summary of publications comparing outcomes of allo-HSCT versus other types of treatments

Reference	Method	Results
Platzbecker et al. ²⁹	Retrospective cohort study in high risk MDS age 60-70 years • Allo-HSCT (n = 103) • AZA (n = 75)	2-year EFS 37% (95% CI 28-48) and 14% (95% CI 7-27), respectively; p = .04 2-year OS 39% (95% CI 30-50) and 23% (95% CI 14-40), respectively; p = .007
Robin et al. ³⁰	Prospective cohort study in high risk MDS age 50–70 years • HLA match donor (n = 112) • No donor (n = 50)	4-year OS 37% (95% CI 28–48) and 15% (95% CI 6–39), respectively; p = .02
Nakamura et al. ³¹	Biologic assignment trial in intermediate-2 or high-risk MDS by IPSS age 50–75 years • RIC allo- HSCT (n = 260) • HMA/BSC (n = 124)	3-year OS 47.9% (95% CI 41.3-54.1) and 26.6% (95% CI 18.4-35.6), respectively; p = .0001
Kröger et al. ³²	Prospective phase II study in intermediate-2 or high-risk MDS by IPSS or intermediate I with high-risk cytogenetics age 55–70 years • RIC allo-HSCT (n = 81) • AZA (n = 27)	3-year EFS 34% (95% CI 22–47) and 0%, respectively; $p < .001$ 3-year OS 50% (95% CI 39–61) and 32% (95% CI 14–52), respectively; $p = .12$

Current Treatment Algorithm in HR-MDS

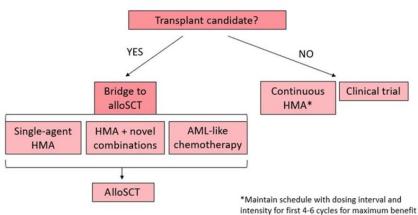


Figure 2. Treatment algorithm for HR-MDS based on current FDA-approved regimens.

HR currently defined according to R-IPSS in clinical practice (> 3.5 points)

Transplantation and Cellular Therapy 29 (2023) 71-81

Transplantation and Cellular Therapy

Arnerican Society for Transplantation and Cellular Therap

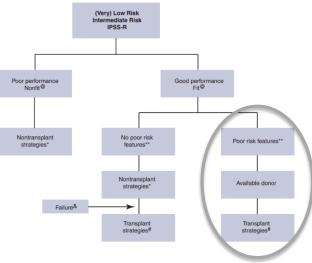
journal homepage: www.tctjournal.org

Guideline

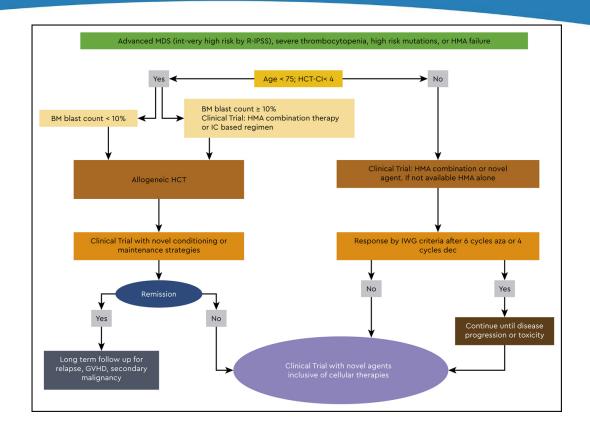
Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines

- ✓ What is the role of allogeneic HCT in MDS?
- How should chromosomal anomalies and somatic mutations be considered in the context of HCT?
- ✓ When should patients with MDS be referred for HCT evaluation?
- ✓ What is the role of pretransplant systemic therapy for MDS?
- ✓ Conditioning intensity, alternative donors and post-transplant issues

WHO TO TRANSPLANT?


- ✓ What is the role of allogeneic HCT in MDS?
- ✓ How should chromosomal anomalies and somatic mutations be considered in the context of HCT?

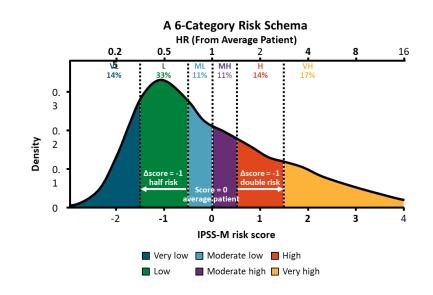
WHEN TO TRANSPLANT?

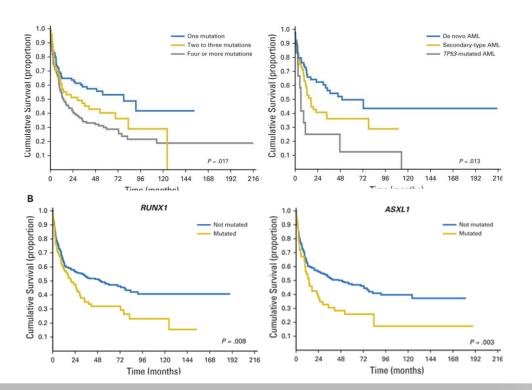

HOW TO TRANSPLANT?

PROGNOSTIC STRATIFICATION AND ALLO-SCT IN LOW-RISK MDS: IS LOW R-IPSS RISK ALWAYS

LOW?

- Molecular assessment, M-IPSS
- Clinical evaluation: response/non-response to available therapies, transfusion requirements, kinetics and complications related to cytopenias, comorbidities, quality of life → dynamic outcome indicators (2)

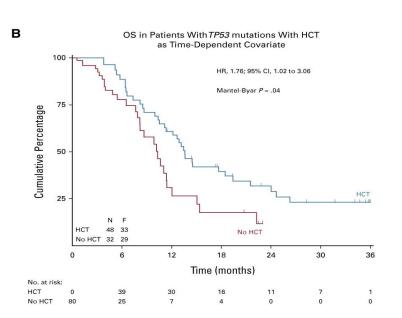



American Society of Hematology

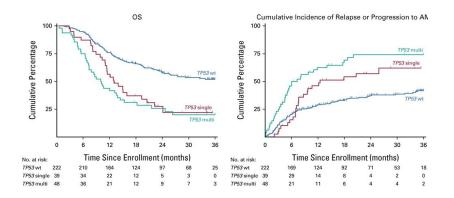
DEVELOPMENT OF IPSS-M

After adjusting for age, sex, MDS type (primary vs therapy related), and IPSS-R raw score, multiple genes were associated with adverse outcomes including LFS (14 genes), OS (16 genes), and AML transformation (15 genes)¹

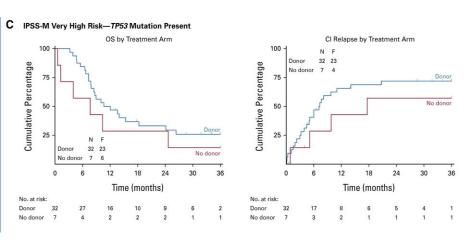
46% of patients were re-stratified from IPSS-R: 74% upstaged / 26% down-staged



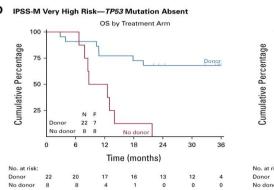
MDS TREATED WITH HSCT: IMPACT OF DRIVER SOMATIC MUTATIONS ON SURVIVAL OUTCOMES

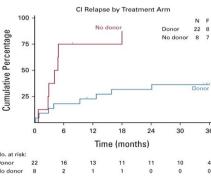

- ASXL1 // RUNX1 // TP53: independent predictors of OS and relapse after HSCT in MDS and AML post-MDS
- The **number of somatic mutations** is associated with survival outcome

GENETIC ANALYSIS OF THE BMT CTN 1102 STUDY

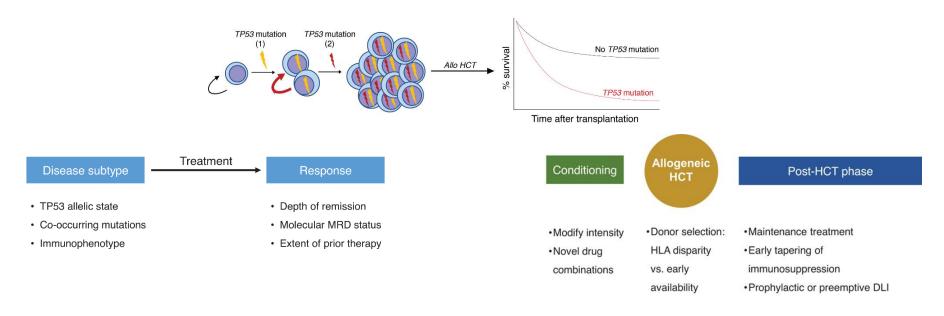

OS in TP53 mut patients was worse compared with TP53 wt patients (21% \pm 5% [SE] v 52% \pm 4% at 3 years; P < .001).

No significant OS difference between TP53single versus TP53multihit (22% \pm 8% v 20% \pm 6% at 3 years; P = .31).

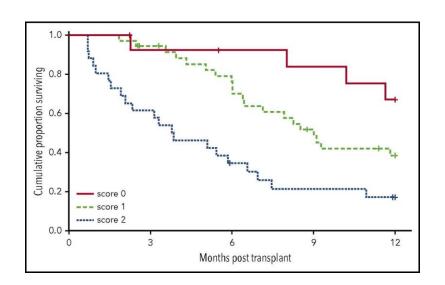



TP53 mut patients undergoing HCT had improved OS compared with non-HCT treatment (OS at 3 years: $23\% \pm 7\% \text{ v } 11\% \pm 7\%$; P = .04) HR of 3.89; 95% CI, 1.87 to 8.12; P < .001

GENETIC ANALYSIS OF THE BMT CTN 1102 STUDY



OS among patients with molecular IPSS (IPSS-M) very high risk without a TP53 mutation was significantly improved if they had a donor (68% \pm 10% v 0% \pm 12% at 3 years; P = .001).



TRANSPLANT FOR TP53-MUTATED MDS AND AML: BECAUSE WE CAN OR **BECAUSE WE SHOULD?**

TRANSPLANT FOR TP53-MUTATED MDS

Retrospective series of 84 TP53 mut patients (55 SCT)

3 independent factors associated with worse OS: HCT-CI > 4 // KPS ≤ 80% // disease not in CR1/2

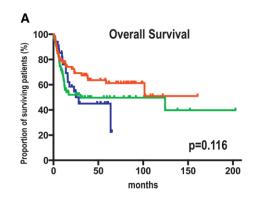
1 year OS according to risk score (0, 1 and \geq 2). 67% - 39% - 17%

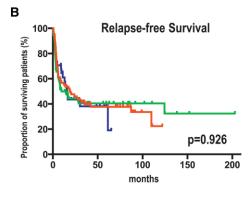
WHO TO TRANSPLANT?

WHEN TO TRANSPLANT?

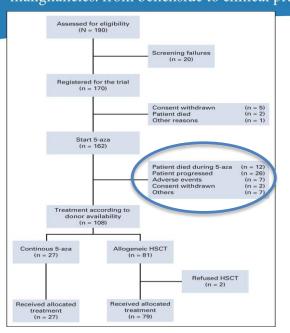
✓ When should patients with MDS be referred for HSCT evaluation?

Should allogeneic HCT routinely be offered	Yes	A	1++
early for advanced (int-2/high) de novo MDS?			


✓ What is the role of pretransplant systemic therapy for MDS?

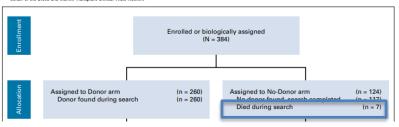

7 9			
Should patients with MDS receive disease-	Unclear	С	2++
directed therapy prior to HCT?			

HOW TO TRANSPLANT?


COMPARISON BETWEEN UPFRONT SCT AND DIFFERENT PRETRANSPLANT CYTOREDUCTIVE TREATMENT APPROACHES IN PATIENTS WITH HR-MDS AND S-AML

- 126 pts with excess blast MDS // retrospective analysis
 - 77 (41%) upfront SCT
- 98 (59%) received preSCT cytoreductive treatment (IC, n = 64; HMAs, n = 34)
- An upfront transplant strategy is at least not inferior to pretransplant cytoreduction

3rd edition Unmet challenges in high risk hematological <u>malignancies</u>: from benchside to clinical practice



Comparison Between 5-Azacytidine Treatment and Allogeneic Stem-Cell Transplantation in Elderly Patients With Advanced MDS According to Donor Availability (VidazaAllo Study)

Nicolaus Krijary, MD¹, Kalja Sockal, MD¹, Christine Weischke, MD¹, Wolfange Bethey, MD¹, Richard F, Schlerk, MD¹, Unimizat Work, MD², Michael Soller, MD², Guide Kolebo, MD², Gental Wulf, MD², Genie Bug, MD², Festin Schlerk-Gelart, MD¹, Christof Schler, MD², Marthau Steller, MD², Delrich Beelen, MD², MD

Biologic Assignment Trial of Reduced-Intensity
Hematopoietic Cell Transplantation Based on
Donor Availability in Patients 50-75 Years of Age
With Advanced Myelodysplastic Syndrome

Ryotano Ralamura, MD¹, Weel Saber, MD, MS², Michael J, Martens, PhD², Alysia Ramirez, BS², Bart Scott, MD²; Betul Oran, MD², Eric Leifer, PhD², Romi Tamari, MD²; Asima Mishra, MD²; Richard T, Maziarz, MD², Joseph McGuirk, DO¹⁹, Peter Westerrelt, MD, PhD¹¹, Sumithira Vassu, MBBS³; Mintal Pathasik, MBBS³; Rammurit Kamble, MD¹², Stephen J, Forman, MD³; Mikkael A, Sekeres, MD, MS³³, Frederick, Appelbaum, MD², Adam Mendizabal, PhD²; Brent Logan, PhD²; Many Horowitz, MD, MS²; and Corey Cutler, MD, MPH¹⁸; on behalf of the Blood and Marrow Transplant Clinical Trisis Network

44 patients in the donor group (16.7%) did not undergo HSCT:

- Disease progression
 - Comorbidities
 - Subject preference
- Donor or insurance issues
 - death

ORIGINAL ARTICLE

HLA-matched allogeneic stem cell transplantation improves outcome of higher risk myelodysplastic syndrome A prospective study on behalf of SFGM-TC and GFM

M Robin^{1,2,3}, R Porcher⁴⁵, L Ades⁶, E Raffoux⁷, M Michallet⁸, S François⁹, J-Y Cahn¹⁰, A Delme¹¹, E Wattel⁸, S Vigouroux¹², J-O Bay¹³, J Comillon¹⁴, A Huynh¹⁵, S Nguyen¹⁶, M-T Rubio¹⁷, L Vincent¹⁸, N Maillard¹⁹, A Charbonnier²⁰, RP de Latour^{1,2,5}, O Reman²¹, H Dombrer^{2,6} P Fenaux^{2,6} and G Scrás^{1,2,5}.

31 patients in the donor group (31/112, 28%) did not receive HSCT because of:

- progressive disease with BM blasts > 10% despite treatment (n=16)
 - acquisition of a comormidity contraindicating HSCT (n=9)
- death during IC or HMA in responders or before assessment (n=4)
 - patient refusal/social reasons (n=2)

Current Treatment Algorithm in HR-MDS

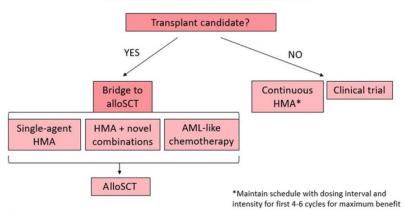


Figure 2. Treatment algorithm for HR-MDS based on current FDA-approved regimens.

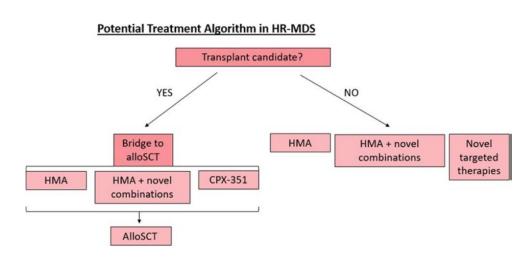
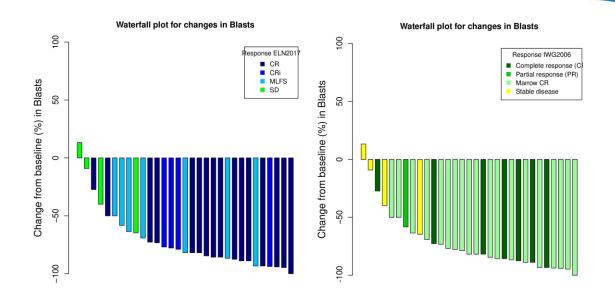
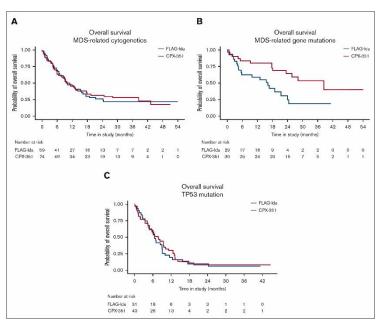




Figure 3. Treatment algorithm for HR-MDS based on therapies under development.

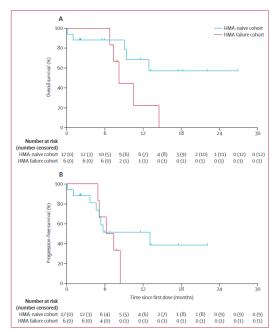
- 31 treatment-naive adult patients with HR-MDS >70 years old.
 - CR 23%, marrow CR (mCR) 45%, HI 6%
- 89% of patients with BM blasts >10% achieved <5% after induction.
- 22 patients went on to receive an alloSCT, with 5 allo-SCTs still planned.

A RANDOMIZED COMPARISON OF CPX-351 AND FLAG-IDA IN ADVERSE KARYOTYPE AML AND HIGH-RISK MDS: THE UK NCRI AML19 TRIAL

- √ 189 patients: 30% high-risk MDS.
- ✓ No difference in OS (13.3 months vs 11.4 months) or EFS in multivariable analysis.
 - ✓ In high-risk AML and MDS, CPX-351 did not improve response or survival compared with FLAG-Ida but produced better relapse-free survival.
 - ✓ In the exploratory subgroup of patients defined by the presence of mutations in MDS-related genes, CPX-351 improved OS.

AZACITIDINE PLUS VENETOCLAX IN PATIENTS WITH HIGH-RISK MDS: PHASE 1-2 STUDY

Phase I/II study


23 patients enrolled in phase I (74% HMAs naïve, 26% post-HMAs failure)

Median FU 13.2 months

Dose/duration reduction in azacytidine and venetoclax administration

ORR 87%; median TTR 1 cycle

Median OS not reached in HMAs-naïve cohort vs 8.3 months in HMAs failure Median PFS 13.1 mo vs 6.2 mo

WHO TO TRANSPLANT?

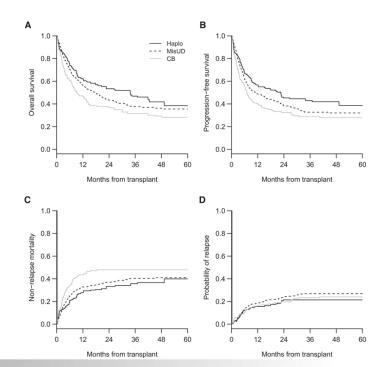
WHEN TO TRANSPLANT?

HOW TO TRANSPLANT?

✓ Conditioning intensity, alternative donors and post-transplant issues

Conditioning regimen			
Are RIC regimens an acceptable alternative for adults considered unfit for MAC regimens?	Yes	A	1++
Should MAC be the preferred conditioning intensity in fit patients?	Unclear	A	1++
Alternative donors			
Can haploidentical relatives, MMUDs, and umbili- cal cord blood be considered as alternative donor options?	Yes	С	2+

Consideration Recommendation Grade of Recommendation Highest Level of Evidence

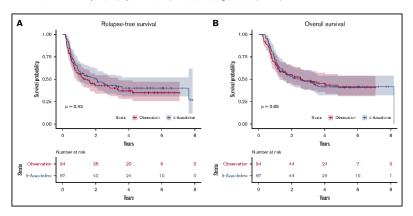

Should patients with MDS receive maintenance therapy after HCT?

Is there a preferred treatment for relapsed disease after HCT?

HLA-MISMATCHED DONORS IN PATIENTS WITH MDS: AN EBMT REGISTRY ANALYSIS

- ✓ PFS better after haplo (versus mismatched unrelated, P = .056; vs CB, P = .003)
- ✓ OS tended to be superior after haplo (vs mismatched unrelated, P = .082; versus CB, P = .002)
- ✓ NRM not significantly different between haplo and mismatched unrelated donors
 - ✓ Relapse risk not influenced by the type of donor

....patients with MDS from the EBMT registry receiving hematopoietic stem cell transplantation from a haplo donor have significantly better outcome than those receiving hematopoietic stem cell transplantation from a CB donor and at least similar or better outcome than with a mismatched unrelated donor....


REGULAR ARTICLE

A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients

Betül Oran,¹ Marcos de Lima,² Guillermo Garcia-Manero,³ Peter F. Thall,⁴ Ruitao Lin,⁴ Uday Popat,¹ Amin M. Alousi,¹ Chitra Hosing,¹ Sergio Giralt,⁵ Gabriela Rondon,¹ Glenda Woodworth,¹ and Richard E. Champlin¹

Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Andreson Cancer Center, Houston, TX; *University Hospitals of Cleveland and Case Western Reserve University Cerebration of Statistics, University of Texas MD Andreson Cancer Center, Houston, TX; and *Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Stoan Kettering Cancer Center, New York, Texas MD Andreson Cancer Center, Houston, TX; and *Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Stoan Kettering Cancer Center, New York, Texas MD Andreson Cancer

The use of subcutaneous 5-azacitidine as posttransplant maintenance strategy was not associated with improved RFS (A) and OS (B) compared with observation arm.

Betül Oran, Marcos de Lima, Guillermo Garcia-Manero, Peter F. Thall, Ruitao Lin, Uday Popat, Amin M. Alousi, Chitra Hosing, Sergio Giralt, Gabriela Rondon, Glenda Woodworth, Richard E. Champlin, A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients, Blood Adv, 2020, Figure 2.

POST-HSCT MAINTENANCE NEW PERSPECTIVES

Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial

Uwe Platzbecker*, Jan Moritz Middeke*, Katja Sockel*, Regina Herbst*, Dominik Wolf*, Claudia D Baldus*, Uta Oelschlägel*, Anke Mütherig*,
Lars Fransecky*, Richard Noppeney*, Gesine Bug*, Kathanina S Götze, Alwin Krämer*, Tilmann Bochtler*, Matthias Stelljes*, Christoph Groth*,
Antje Schubert*, Manika Mende*, Friedrich Stözel*, Christin Borkmann*, Anne Sophie Kubasch*, Malte von Bonin*, Hubert Serve*, Mathias Hände*,
Ulrich Dührsen*, Johannes Schetelig*, Christoph Röllig*, Michael Kramer*, Gerhard Ehninger*, Martin Bornhäuser*, Christian Thiede*

Eprenetapopt Plus Azacitidine After
Allogeneic Hematopoietic Stem-Cell
Transplantation for *TP53*-Mutant Acute Myeloid
Leukemia and Myelodysplastic Syndromes

Asmita Mishra, MD¹; Roni Tamari, MD²; Amy E. DeZern, MD¹; Michael T. Byrne, DO²; Mahasweta Gooptu, MD²; Yi-Bin Chen, MD², H. Joachim Deeg, MD²; David Sallman, MD²; Phillip Gallacher, BSC⁹; Anders Wennborg, MD, PhD⁹; Denice K. Hickman, BSN, RN¹ Eyal C. Attar, MD²; and Hugo F. Femandez, MD¹⁰ REGULAR ARTICLE

blood advances

Enasidenib as maintenance following allogeneic hematopoietic cell transplantation for *IDH2*-mutated myeloid malignancies

Amir T, Fathi, ¹ Haseook T, Kim,² Robert J, Soffler,⁵ Mark L, Leviss, ⁶ Shuli LL, ² Annette S, Kim,⁵ Alico S, Mims, ⁶ Zachariah DeFilipp, Areej El-Jawahri, ⁷ Steven L, McAfee, ¹ Andrew M, Brunner, ¹ Rupa Narayan, ¹ Laura W, Knight, ¹ Devon Kelley, ¹ AJ S. Bottoms, ¹ Lindsey H, Perry, ¹ Jonathan L, Wahl, ³ Jennifer Brock, ⁶ Elayne Breton, ⁷ Vincent T. Ho, ³ and Yr-Bin Chen¹

*Massachusetts General Hospital Cancier Center, Harvard Medical School, Boston, MA; *Department of Data Science, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA; *Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; *Sohna Hopkins Schery Kermed Comprehensive Cancer Center, Baltinore MD; *Birgham and Women's Hospital, Harvard Medical School, Boston, MA; and "The Ohio State University Comprehensive Cancer Center, Baltimore MD; *Birgham and Women's Hospital, Harvard Medical School, Boston, MA; and "The Ohio State University Comprehensive Cancer Center, Coultribus, OH

3rd edition

Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Scientific board: Marco Ladetto (Alessandria) Umberto Vitolo (Candiolo-TO)

